1.) Translate the following IEEE Single-Precision FP numbers to their decimal equivalent. (12 pts. = 4 pts. each)
 a. \(\text{0xc0700000} \)
 \[
 \begin{array}{llllll}
 1 & 100_0000_0 & 111_0000_0000_0000_0000_0000 \\
 \end{array}
 \]
 \(-1.111 \times 2^1 = -11.11 = -3.75 \)
 b. \(\text{0x41900000} \)
 \[
 \begin{array}{llllll}
 0 & 100_0001_1 & 001_0000_0000_0000_0000_0000 \\
 \end{array}
 \]
 \(+1.001 \times 2^4 = +10010 = +18 \)
 c. \(\text{0x7f800000} \)
 \[
 \begin{array}{llllll}
 0 & 111_1111_1 & 000_0000_0000_0000_0000_0000 \\
 \end{array}
 \]
 Exponent is all 1’s and Fraction is all 0’s => +inf

2.) Translate the following floating point numbers to decimal numbers. [6 pts. = 1 pt. for sign + 2 pts. for magnitude of each part a and b].
 a.) \(\text{0 10111 110101} \)
 \[
 A = +1.110101 \times 2^8 \\
 = +468
 \]
 b.) \(\text{1 01110 101000} \)
 \[
 B = -1.101 \times 2^{-1} \\
 = -0.8125
 \]

3.) Show the following decimal numbers as floating point numbers. When you normalize show the G, R, and S bits. Then, use the “round-to-nearest” method, if needed. [18 pts. = 2 pts. per field]
 a. +227 \(a = +1.11000011 \times 2^7; \ G=1, R=0, \ S=0 \)
 \[
 \begin{array}{llll}
 0 & 10110 & 110010 \\
 \end{array}
 \]
 b. -13.625 \(b = -1.101101 \times 2^3; \ G=0, R=0, \ S=0 \)
 \[
 \begin{array}{llll}
 1 & 10010 & 101101 \\
 \end{array}
 \]
 c. -80.75 \(c = -1.01000001 \times 2^6; \ G=1, R=1, \ S=0 \)
 \[
 \begin{array}{llll}
 1 & 10101 & 010001 \\
 \end{array}
 \]
4.) Review the Lecture notes regarding floating point exceptions and NaN’s. Then for each case a – d, list any exceptions that will arise as a result of the operation. The five possible exceptions are listed below. [4 pts. = 1 pt. each]

1. Invalid (NaN)
2. Divide by Zero
3. Overflow
4. Underflow
5. None

a. Max FP - Max FP = (5) None
b. Max FP / Min FP = (3) Overflow
c. Min FP / Max FP = (4) Underflow
d. (Max FP+1) / 0 = (1) Invalid (NaN)