EE 109 Homework 2

Name: ___ Score: ________
Due: See class website

Enter your answers on Blackboard..Assignments..HW..Homework 2

Data Representation

1.) Perform the following number system conversions. Note: It may be easier to convert them to the desired base in a different order than shown here. (2 pts. per conversion)

 a. $1100101.1011_2 = ?_8 = ?_{16} = ?_{10}$
 b. $1A9_{16} = ?_8 = ?_2 = ?_{10}$
 c. $617_8 = ?_{16} = ?_2 = ?_{10}$

2.) What are the corresponding decimal representations for the following binary strings? (2 pts. each)

<table>
<thead>
<tr>
<th>Binary String</th>
<th>8-bit unsigned format</th>
<th>8-bit 2’s complement format</th>
</tr>
</thead>
<tbody>
<tr>
<td>10110110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11011011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.) For each of the following decimal numbers find the corresponding 8-bit representation using the indicated systems. Note: Some numbers may NOT be representable w/ 8-bits. If this is the case, put **NA** for the answer. Also find the minimum bits needed to represent the number in the 2’s complement system. (4 pts. ea.)

<table>
<thead>
<tr>
<th>2’s Complement</th>
<th>Minimum bits needed using 2’s complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>-128</td>
<td></td>
</tr>
<tr>
<td>+31</td>
<td></td>
</tr>
<tr>
<td>+59</td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
</tr>
</tbody>
</table>

4.) Each C declaration of the variable x is initialized to a value in decimal. Show that value represented in hex using the appropriate size indicated by the variable type (e.g. char = 1-byte = 2 hex digits). Assume a 32-bit computer system where 'int' = 4-bytes. Use a calculator only if you have to. (3 pts. each)

 a. short int x = 13;
 b. short int x = -32,767;
 c. unsigned char = 246;
 d. int x = -4096;
 e. unsigned char x = 193;
 f. int x = -1;
 g. unsigned char x = ‘a’;
 h. short int x = 40;
 i. unsigned char x = 97;
 j. char x = -79;
5.) Convert the powers of 2 shown below to its approximate decimal value using K to represent 10^3, M for 10^6, G for 10^9, and T for 10^{12}. (e.g. $2^{12} \approx 4K$) [2 pts. each]

a. $2^{19} = ?$

 i. $9K$
 ii. $512K$
 iii. $512M$
 iv. $256K$
 v. $256M$

b. $2^{36} = ?$

 i. $64M$
 ii. $64G$
 iii. $8M$
 iv. $8G$
 v. $8T$

c. $2^{43} = ?$

 i. $8G$
 ii. $8T$
 iii. $16M$
 iv. $16G$
 v. $16T$

d. $2^{24} = ?$

 i. $4K$
 ii. $4M$
 iii. $8M$
 iv. $16M$
 v. $16G$