CSCI 104L: Lecture 5 Notes

- \(f(n) \) is \(O(g(n)) \) means \(f(n) \leq c \cdot g(n) \), for all \(n \geq n_0 \), for some constants \(c, n_0 \). That is, our algorithm never takes more time than \(g(n) \) times a constant for sufficiently large inputs.

- \(f(n) \) is \(\Theta(g(n)) \) means \(f(n) \) is \(O(g(n)) \) and \(f(n) \) is \(\Omega(g(n)) \). This means that, up to constant factors, \(f \) and \(g \) are the same function.

- Big-Oh notation measures the growth rate of an algorithm, ignoring those pesky constant factors, and concerning itself with what happens for very large inputs. We typically consider the worst-case.

Calculating worst-case

- Do not assume a specific input. If some inputs do one thing, and other inputs do the other, assume the worst of the two happens.
- An elementary statement such as \(a[i]++ \), is a constant number of steps, so write it as \(\Theta(1) \).
- If you have two code blocks with runtime \(T_1(n) \) and \(T_2(n) \), and you run them in sequence, then add the runtimes. The runtime would be \(T_1(n) + T_2(n) \).
- When you have a for loop, add up each element. So if a block takes \(T_i(n) \) time, for \(i \) ranging from \(i = 0 \) up to \(i = n - 1 \), then the runtime would be \(\sum_{i=0}^{n-1} T_i(n) \). Note the variable \(i \) is saying that the block may take a different amount of time for each iteration.

Exercise 1. Calculate the runtime:

```c
for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        a[i][j] = i*j;
```

The following sums may come up in analysis and may prove useful to you.

- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \theta(n^2) \). This is called the arithmetic series.
- \(\sum_{i=0}^{n} i^p = \Theta(n^{p+1}) \). This is a general form of the arithmetic series.
- \(\sum_{i=0}^{n} c^i = \frac{c^{n+1} - 1}{c-1} = \Theta(c^n) \). This is called the geometric series.
- \(\sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n) \). This is called the harmonic series.

Exercise 2. Calculate the runtime:

```c
for (int i = 0; i < n; i++)
    if (a[i][0] == 0)
        for (int j = 0; j < i; j++)
            a[i][j] = i*j;
```

Exercise 3. Calculate the runtime:

```c
for (int i = 1; i < n; i *= 2)
    for (int j = 0; j < i; j++)
        a[i][j] = i*j;
```

Exercise 4. Calculate the runtime:

```c
for (int i = 0; i < n; i++)
    if (i == 0)
        for (int j = 0; j < n; j++)
            a[i][j] = i*j;
```
Exercise 5. What is the running time of the following code?

```c
// t = target element.  b = array.  len = length of array.
int iterativeBinarySearch(int t, int *b, int len) {
    int lo = 0, hi = len−1, mid;
    while(lo <= hi) {
        mid = (hi+lo)/2;
        if (b[mid]==t) return mid;
        else if (t < b[mid]) hi = mid−1;
        else lo = mid+1;
    }
    return −1;
}
```

Exercise 6. Calculate the runtime:

```c
for (int i = 1; i < n; i++)
    for (int j = 0; j < n; j += i)
        a[i][j] = i*j;
```

Analyzing recursive functions

Exercise 7. How can you analyze something like this?

```c
void recurse (int *A, int size) {
    if (size <= 1) return;
    //do stuff (taking O(1) time)
    recurse (first half of A, size/2);
    recurse (second half of A, size/2);
}
```

Exercise 8. Find a recurrence relation:

```c
int *a;
void foo(int left, int right, int digit) {
    for (int i = left; i <= right; i++) a[i] += digit;
    if (right > left) {
        foo(left, (left+right)/2, 0);
        foo((left+right)/2+1, right, 1);
    }
}

int main() {
    int n = 8; //guaranteed to be a power of 2.
    a = new int[n];
    for (int i = 0; i < n; i++) a[i] = 0;
    foo(0, n−1, 0);
    for (int i = 0; i < n; i++) cout << a[i] << endl;
    return 0;
}
```