CSCI 104L Lecture 20 : Heaps

Priority Queues

In a Priority Queue ADT, you may perform the following operations:

- Add an item (with a priority)
- Return the item of highest priority
- Delete the item of highest priority

Question 1. What would be the runtime of add/peek remove, using a...

- unsorted array / linked list?
- sorted array?

![Tree diagram]

A tree with values in the nodes. Consider this figure when answering the following questions.

Question 2. What kind of tree is this?

Question 3. Do we really need to store it as a tree, or is there a more compact representation?

Question 4. If we are at index x, which index is “above” it in the tree?

Question 5. If we are at index x, which index is “below it to the left”? “below it to the right”?

We say that a tree has the **heap property** if, for each item in our “tree,” it will have higher (or equal) priority to anything below it.

Here are some of the functions within the PriorityQueue class:

```cpp
T PriorityQueue::peek() const {
    return a[0];
}

void PriorityQueue::add(const T& data) {
    a[size] = data;
    bubbleUp(size);
    size++;
}
```
void PriorityQueue::bubbleUp(int pos) {
 if (pos > 0 && a[pos] > a[(pos-1)/2]) {
 a.swap(pos, (pos-1)/2);
 bubbleUp((pos-1)/2);
 }
}
void PriorityQueue::remove() {
 a.swap(0, size-1);
 size--;
 trickleDown(0);
}
void PriorityQueue::trickleDown(int pos) {
 int child = 2*pos+1;
 if (child < size) {
 if (child+1 < size && a[child] < a[child+1]) child++;
 if (a[child] > a[pos]) {
 a.swap(child, pos);
 trickleDown(child);
 }
 }
}

Question 6. What is the runtime for each of the PriorityQueue operations?:

![Heap operations image]

Image produced by Robert Sedgewick and Kevin Wayne