A graph consists of a set of vertices (sometimes called nodes, \(V\)), and their relationships (or edges, \(E\)). We will generally refer to \(|V| = n\) and \(|E| = m\).

Question 1. Are these problems naturally modeled as directed or undirected graphs?

(a) Computer networks
(b) The Internet.
(c) Social networks.
(d) Road systems.
(e) Predator behavior between species

For a **Graph ADT**, we want to be able to do (at minimum) the following:

1. Add a node.
2. Delete a node.
3. Add an edge.
4. Delete an edge.
5. Test if an edge from \(u\) to \(v\) exists.
6. Enumerate all outgoing edges from a node.
7. Enumerate all incoming edges from a node.

Question 2. What are the runtimes of adding/deleting an edge, testing an edge, or enumerating edges, if we store the edges as....

- An unsorted array or linked list?
- A sorted array?
- An **Adjacency list**: for each node, store a list of adjacent nodes.
- An **Adjacency matrix**: in an \(n\) by \(n\) matrix of bools, \(A[u,v]\) indicates whether there is an edge from node \(u\) to node \(v\).

In **sparse** graphs \((m = O(n))\), an adjacency list is more economical. For **dense** graphs \((m = \Omega(n^2))\), you might as well go for the adjacency matrix.

A **tree** is an undirected, connected graph, without cycles.

- A tree is **d-ary** if all nodes have between 0 and \(d\) children. A **binary** tree is a 2-ary tree.
- A d-ary tree is **full** if every node has exactly 0 or \(d\) children, and all the leaf nodes are at the same level.
- A d-ary tree is **complete** if you fill each level from left-to-right, and you don’t start a new level until the previous one is complete.
Question 3. How should we store the edges of a tree?

Class definition for a binary tree:

```cpp
template <typename T>
class Node {
  T data;
  Node<T> *parent;
  Node<T> *leftChild, *rightChild;
};
```

If we’re storing our nodes in an array, we can simply store the indices of a node rather than pointers.

In a complete binary tree, we don’t even need this much information, since we can directly calculate where the parent, leftchild, and rightchild are based on the current index.

Binary Search Trees

A binary tree is a search tree if the following property holds for all nodes:

The value of the leftChild is \(\leq \) the value of the parent (or is NULL), which is \(\leq \) the value of the rightChild (unless rightChild is NULL).

Question 4. What benefits would a BST have over a sorted array?

Question 5. How long does our search algorithm take for a BST?

Tree Traversal

- Pre-order: Visit parent, then children.
- In-order: Visit first child, then parent, then other children
- Post-order: Visit children, then parent.

PageRank

The key insight for Google’s search engine was to think of the world wide web as a graph. The main idea is that, if page A links to page B, this is an endorsement from A of B. All other things being equal, if A has more inlinks than B, than A is better than B.